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Quantum response for chaotic resonances
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Chaotic dynamics of conducting electrons in the presence of a high-frequency electromagnetic field and a
constant homogeneous magnetic field is considered. It is shown that quantum fluctuations become important in
this case on a time scale shorter than mean free time. Nonperturbative approach for calculation of a kinetic
coefficient(conductivity) is developed. An analytical expression for the kinetic coefficient as a function of the
magnetic field and a localization length is obtained. Dependence of the conductivity on the quantum localiza-
tion length is studied.

PACS numbsefs): 05.45-a, 03.65.Sq, 73.50.Jt

I. INTRODUCTION in the energy space and dynamical localization of quasien-
ergy wave functions take place due to such quantum effects
Nonlinear dynamics of Bloch electrons in the presence of8]. Correlation functions of dynamical variables become os-
external fields attracts much attention today. It is an ex-  cillatory. One can expect that the oscillatory dependence of
ample of complicated motion with possible manifestation ofthe surface impedance on the magnetic field is restored. It is
chaos in classical dynamics, and, consequently, realization ¢fecessary to stress that linear response theory for the pertur-
quantum chaos for corresponding quantum counterparts ipation discussed here does not hold in the case of the reso-
nanostructures/2]. Essential progress in this area wasnant interaction of the Fermi surface electrons with the per-
achieved in the investigation of electronic motion in the lat-turbating microwave field in a regime where chaotic
eral surface superlattices in the presence of a homogeneodgnamics takes place in the classical limit. In this case, the
magnetic field 3]. Phenomena of magnetoresistance, classiKubo formula is used for the calculation of the response of
cal and quantum Hall conductance, anfl adise have been the complete chaotic system including the microwave field to
considered. Investigations of deviation from the classical cya probe external field. Justification of this approach is pre-
clotron resonance for microwave photoconductivity in anti-sented here as well. Kinetic coefficients can be found in this
dot arrays have been carried out as Wéll case as a response of the chaotic system including the driv-
The cyclotron resonance in metals is an example of noning field to a small probe field. Therefore, we will consider
linear motion of electrons on the Fermi surface in the presthe kinetic coefficient in the standard form of the Kubo for-
ence of external fields with possible manifestation of chaognula
as well[5]. In this case, an essential difference between cha-
ptic and integrable dynamics ngds to an essgntial difference K(z)=Re wdtR(t)e—t/ﬁ—izt’ 1)
in the behavior of the conductivity as a function of a mag- 0
netic field. As it has been shown 6], conductivity oscilla-
tions as a function of a magnetic field disappear, while fowhere Re is the real part and the velocity—velocity correla-
the integrable case the conductivity oscillates due to resdion function is
nances between cyclotronic motion and an external high-
frequency field. Quantum dynamics of the chaotically inter-
acting cyclotron resonances is considered in this paper. It is
known that quantum chaotic dynamics can be totally differ-

ent from classical dynamics on time scales larger than somgnere ;(t)=0(t)0(0)J(t) is a velocity operator in the

characteristic timef6]. We study hOW.thIS microscopic dif- Heisenberg representatiofl(t) is an evolution operator,
ference between quantum and classical dynamics reflects

I 2
difference of macroscopic characteristics such as conducti\[' --)=Tr(p---) means quantum-mechanical averaging
ity. An important condition for observation of both isolated With an appropriate density operatgrandh is a dimension-
cyclotron resonances and interacting onesis>1, where less semiclassical parameter. In general cases, it depends
w* is the cyclotron frequency andis a time of a mean free both on time and temperature. This expression takes into
path. In the case of chaotic dynamics, this condition is im-account the driving microwave field exactly.

portant for quantum-mechanical interpretation of this effect Therefore, in this paper we present a model in the frame-
as well. Indeed, if we take into account that=2m/w* isa  Work of the resonant perturbation approach, which is beyond
Heisenberg time over which a discrete nature of Landa[jhe linear response consideration. This model predicts a pos-
spectrum becomes important and reflects in dynamics angible experimental realization of quantum chaos in the “tra-
spectroscopy7], thenr> 7, means that the quantum effects ditional” sense, investigating quantum effects in systems
become important on the time scale of the orderroft that are chaotic in the classical limih{-0). The following
>4, and some of them are a manifestation of chaotic dystandard scenario is suggested. The main mechanism of clas-
namics of the classical limit. Saturation of classical diffusionsical chaos is an interaction between nonlinear resonances

1 . . ~ a
R(t)=%<U(t)v(0)+v(0)v(t)>, @
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9,10 with the Chirikov criterion of overlap. Cyclotron reso- T =% +esinut,

nance in metals is a nonlinear effect. In the isolated reso- 3)
nance approximation, the quantum dynamics of the nonlinear ~

resonance is well described by classical equations of motion. thr1=tht Te(Envn),

Quantum corrections to the classical solutions are slowly _

growing [11] and can be omitted. The situation changeswhere £=E/Aw* is the dimensionless energy; ane
when the nonlinear resonances overlap, giving rise to chaotie AE/Zw* is a dimensionless semiclassical parameter con-
dynamics. Classical equations are not valid because quantunected to the number of energy levels captured in a reso-
corrections grow exponentially in timgl2,7]. So-called nance. In this case, the cyclotron frequency is determined by
guantum localization of classical diffusion in the energy w.(€)=2n/w*T(£), where w* is a cyclotron frequency
space is a unique feature of the quantum counterpart of thistroduced here for the dimensionless scaling and it will be
chaotic systeni7,8]. This quantum process is characterizeddetermined in the explicit form in what follows. In the vicin-

by a localization lengthy *och~2. We found a behavior of ity of a fixed point&*, which is defined by the resonance

the kinetic coefficienK due to the localization length. When condition

the localization length is large enough, classical chaotic dy-

namics dominates. In this case, the kinetic coefficieris yT(E)=27f, f=1,2,..., (4)

constant and does not reflect the magnetic-field change as a

result _of an overlapping _olf _the nonlinear resonances. In th%qs_ (3) can be locally approximated by a standard map

opposite extreme, whep™ * is small, the dynamics reflects 14,10

the discrete nature of the Landau levels. The kinetic coeffi-

cient develops poles at the quantum resonant transitions be-

tween the Landau levels and oscillates with a change of the

magnetic field. Thus the appearance of th€sescillations in

overlapping cyclotron resonances reflects a distinctly quan-

tum effect. This macrocharacteristic of the system can also

be measured experimentally. where
The paper is organized as follows. In the Sec. Il, an en- _

ergy balance equation, describing an electron energy change ~ o~ dT(&Y) ~

under each passing of a skin layer, is modeled by an effective ==&, (= a2 To=T(&"). ©)

Hamiltonian for the action-angle variables. This system can

pe quantized by a standard semiclassical procedure. A Vel.offor long-term dynamics, all these errors accumulate. For the

ity operator as well as all parameters of the effective Hamil-

) . . . short time scale of the order of a period of the high-
tonian are determined in Sec. Illl. The quantum eigenvalu requency perturbation 2/» (upon which the gquantum
probl_em f_or quasienergies and _correspondlng quaSIenergélnalysis is carried out below for the Floquet evolution opera-
functions is solved in Sec. IV. It is shown that the problem . i : c
corresponds effectively to one-dimensional 1D Anderson Io—tor) this round-off does not affect the dynamics, but simpli

resp Y o - : fies the following analytical consideration. We notice that the
calization. A calculation of the kinetic coefficient is pre- main structure of the nonlinear resonances remains un-
senteq in Sec. V and Appendlxgs A and B. The IasF Secngr(}hangec[lS]. For the slowly varying spectrum, this proce-
cor_1ta|ns a summary of the pbtamed res_ult and a OIISCUSSIO(ﬁlure is the standard and widely used in the nonlinear dynam-
of its possible experimental implementation. ics theory[9,14—16

The nonlinear resonances are determined by the second
[l. DERIVATION OF THE EFFECTIVE HAMILTONIAN term in the expansion, such that the Chirikov criterion of

K ey =1
We consider an example of the quantum effect for chaoticChaos ISk evi=1. . . .
For the semiclassical considerations, we will pass to the

motion due to overlapping of cyclotron resonances in the

caseof the Azl -Kaner geomeryforexernl k) | S0 VaTabls fof Wi & recedtye of e sen
[13]. Hence an alternating electric fieke= (0,Eysint,0) is q i

concentrated in a skin layer of depth Here » is the fre- perturbation,£ is energy of a periodic motion with a fre-

guency of the alternating field. Electrons move in a planequency

orthogonal to the homogeneous magnetic fidle (0,0H) de 2w

with the cyclotron frequency.=eH/mcc. Heree, m;, and ()= === ——~2m(To+ ¢E) L. 7)

c are charge, cyclotron effective mass, and the speed of light, di T

respectively. The energig of an electron changes by the

amount AE~2eE,\2AR.sinut for every traverse of the Solving this equation, we obtain a solution that corresponds
skin layer, whereR, is the radius of the orbit. It is supposed to the following conditionf<T,/{:

that the time of passing of the skin laygr satisfies the

following conditions: ty<27/v<2w/w,. Thus, we can E=Ql—ul?2, )
construct a map connecting the energies of an electron and

the phases of the electric field over the period T(E) be- whereQ=27/Ty andu= 16772§/T8.

tween two successive traverses of the skin layer. It has the The energy change resulting from the perturbation over
following form [5,14]: time At=T reads from Eqgs(5) and (8):

Enir=E+ esimt,,

®)

the1=thtTo+ &1,
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. Ill. THE VELOCITY OPERATOR
AH0=f o(l)ldt=esinwyt ~
At The velocity operatow (0) can be determined frofi, by
its standard definitionv (K)=de(K)/d(%k), wherek is a
- fj (iézﬂ-(t,_t)> cospt’dt’, (9 Wwave number Whi_Ies(k) is an energy dispersion Iaw._ It is
VJat\ dt’ reasonable to believe that it coincidesally with H, with
corresponding redefinition of the parameters due to the pres-

where 8, ,(2) is the 2 periodic & function. Comparing in- ence of the magnetic fieldi=(0,0H). Therefore after
tegrands from the left- and right-hand sides of E®), we  Peijerls substitutioi19] we can write in the Landau gauge
obtain for the arbitrary time scalkt the following equations for  two-dimensional motion  that e(k,a,k,b,H,)
of motion for the action-angle pair: =e(@lhip.; (b/h)(py—[eH/c]x)), wherea,b are the peri-
ods of lattice in thex andy directions, respectively. The

. € i i 1 i 1 -
i— ;w(l)&é,,( 0)cosut, dispersion lawe can be rewritten approximately in the fol

lowing form:
H= gola 2 Eo b 2
o= w(l), (10 e(k,H)~ep+ 7(g) et 7(g
where &8;,(6)=(d/d#)5,,.(6). These equations of motion g2 202 1(p)2
are not Hamiltonian. To obtain such equations, the perturba- x| py— € x) _ 4l &+ z _)
tion of the form (/v)w’ (1) 8,,(#)cost is added to the sec- Y 4\h) 2 2\h
ond equation of Eq(10). Finally, chaotic dynamics is de- g \2]2
scribed by the following effective Hamiltonian: x| py— e_x) , (13
€
H="Ho(1) = (1) 55( #)cosrt. (1) whereeg,s,,£4 are parameters of the expansion. It is con-
venient to introduce dimensionless variables in the following
It is simple to show from Eqg10) and(11) that an influence form:
of adding the perturbative term is negligibly small, when b b
ew'(1)/w(1)<1. It should be stressed that the effective _ba q:_(ﬂx_p ):_eH (X—Xo)
Hamiltonian(11) describes the same resonances taking place ho’ hlc Y| ch '
in Eq. (5) with the same threshold of chaos. It follows from (14
Egs.(5) and (1)) thatvT(&) =27l andl 6(1,)=lw(l,)=v, b . v . g,abeH
wherel, is the resonant action corresponding to lttrereso- Xo=7 Py, @ t=t, E_’V’ w = PP

nant and&, = &(1,) is corresponding resonant energy deter-
mined from Eq. (8). The following expansiond,.(0)
=23,_,c0s0—1 is used as well. This Hamiltonian can be
obtained for an arbitrary dispersion law with the period
T.(€), because in the proceduf@0) and (11) an explicit
form of H, and, consequently, of.(£) was not used17].
The Hamiltonian formulation of the problem allows sgmi- _ gq op Hab ®
classical quantization in the action-angle formulatibn:| hzh{q,p}pzh& ﬁz msZwa, (15
=hn=—ihd/36. Hereh is a dimensionless Planck constant ) 0
defined from the number of quanta in the magnetic field flux
The semiclassical approximation requires that the width o
the perturbative potential is larger than the de Broglie wave-

Here the expression fap* is just the definition of the cy-

clotron frequency for Eq(3). The dimensionless Plank con-
stant is also determined from E@.4) by the Poisson brack-

ets forp andq :

here® is the magnetic field flux through the celb, and
o=2mficle. Introducing new variables

length[18]. In this connection it is necessary to restrict sum-

mation in the Fourier expansion of ti&,.(0) potential. We p=i \/E(k—kT) q= \ﬁ(k+k1) | =TikTk
have understood thé function as an approximation of a 2 ' 2 ' '
potential with width of a spike that equals tarN: Sy (6) (16)
=22E‘=0cosk0—1, wheredy(6) tends tod,(6) asN tends

to infinity and 1hs>N>1. and defining the Hamiltonian as—¢gy/hw* —Hy with Q

=g,/hw*, u=e,/how*, one obtains the relation between
the dispersion law in the local forid3) and the Hamiltonian
Ho. Therefore the velocity isv=v"+v " =q=3dHy/dp,
where

The Hamiltonian(11) can be rewritten in the Hermitian
form

F=Tto(P)— ;[w(ﬁ) 5\(0)+H.clcosut, (12

vt =iV2ho(1)k,

where H.c. is the Hermitian conjugation afith(n) is the 17
quantized unperturbed Hamiltonian in H4.). v =—iV2hK w(l).
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For the semiclassical quantization, we can considgk as a

$(6,0)=Uq()(6,0)=Uq()(0) and  0()y(6,0)

creation and an annihilation operators that take form in the- e*ika(ﬂ)tua(ﬁ)(gyt), where a(8) means here and in the

e"?=(g|n) representation

kK'=\hne'?  k=etn, k'k=n=—i =

k'In)=Vne'%e’= \n+1|n+1), (18)
kiny=nln—1), k'k/n)=n|n).
One obtains also from Eq18) that
(|5~ |m) = —i V2Re(m) VMt L6 ms 1,
(m[o*|m’y =i V2R (m’ — 1) VM’ 8p w1,

where g; ; is the Kroneckew symbol.

(19

IV. DIAGONALIZATION OF THE FLOQUET OPERATOR

The Hamiltonian(12) is periodic in time, hence the Flo-
quet theory can be used for the analysis. The @hger
equation

~d A
= (0.0 =H(0,)(6.,1) (20
is rewritten for the Floquet operator

P O N
F=—|hE+H(n,0,t)——|hE+Ho(n)+V(n,0,t)

(21)
in the form of the eigenvalue problem
Fu,(8,t)=hA,u,(6,1), (22
due to the Floquet theorem
P(0,t)=e Malu (0,1), (23

where|u,(t))=u,(6,t) are periodic in time with the period
21/ v quasienergy eigenfunctions, ang are corresponding
eigenvalues. Therefor&, in Egs. (1) and(2) can be deter-
mined as follows:

R=2, (n|pv(t)v(0)|n)+c.c.

=QEB 2 pnnynilUa(0))(ua(0)[ 0T (02 (0)0()
X |ug(0)){ug(0)|v(0)[n)+c.c.
=EB e py (11U (0))(Ua(D)[v]ug(D))

X(ug(0)|v|ny+c.c., (24)

where c.c. means complex conjugation anmnl
=(n|p|n,). It is used here that for the moment=0,

following either« or B. To calculate the matrix elements in
Eq. (24), one needs to find , 5 andu,s . To that end the
eigenvalue equation for the Floquet operator can be pro-
jected onto a basis of “photon state$20,16. The reason

for the occurrence of the “photon states” or quasiresonances
[21] is that the unperturbed spectruf is a slowly varying
function of n [see EQq.(8)]. There are many transition fre-
guencies, and many near-resonan@ggsiresonancgsake
place due to the external fiel(n, 6,t). Thus the eigenvalue
E(n) of the unperturbed Hamiltoniatk{, can be expanded
around a large valueg to the first orderE(n)~E(ng)
+hw(ng)An, whereAn=n—n,. Then the eigenvalue equa-
tion (22) for this approximation corresponds to the eigen-
value problem for a “linear kicked rotor16,22, which is

an exactly solvable mode[23] with quasienergies\
=lw(An)(modv). The indexa(B) is omitted in what fol-
lows. The corresponding eigenstates in theepresentation
can be expressed as a composition of a chain of peaks sepa-
rated by the energy of a photon of the external fible
These peaks correspond to the quasiresonances and are de-
scribed by a sinc function of the form

sifw(n—n;+6))]
7T(n_n]+5j)] '

Qi(n)= (25)
wheren; corresponds to the center of thith peak ands;
characterizes its precise shape. These are determined from
the linearized model by the following expressiorié;1j

=E(ng) +hw(ng)Anj~hx+hvj—hw(ng) s with hx
=E(ny) —hw(ng)ny and

1) ()
nj= mt[ ?} ) :frac{ ?] , (26)

where in{x} is the integer part ok and fra¢x} is its frac-
tional part[16]. We can obtain a solution for the origin non-
linear problem(22) by matching quasiresonancézb) for
different energieg16,27. Thus the quasiresonances deter-
mine the energ)Enj on the ladder of states; analogous to

the linear counterpart by the form
Ey =\ +hvj—hsw(n). (27)

The eigenvalue. corresponds to Eq22) and sets the origin

of the ladder for the corresponding quasienergy eigenfunc-
tion, and the quasiresonance functi@b) are numbered by
their positionj on the ladder, where; is the peak of the
position and the detunings;|<1/2 satisfies Eq(27). The
quasienergy eigenstate can be approximated (bju,)
=2jA;Q;(n), where A; stands to be determined. To this
end, the following procedure is carried out. Eigenfunctions

for the unperturbed Floquet operal%g;: —ihalat+H, are
In,j)y=e"’%e = n)|j) (28

with corresponding eigenvaluds,—hvj. Using the defini-
tion ¢§3(3):<n,j|uxa(ﬁ)(0,t)> and omitting for shortness the



446

index a(B), we project the eigenvalue equation foron the
basis(j, n| and obtain the eigenvalue equation for the coef-
ficients d’m in the form

(En=Tri) @b+ 5 2 (Nl (R)32.(6)+ San( B (i) ")

XLdn i1t b 1]=PAe) ;. (29
In the unperturbed cases=0 and T))\zEnj—ﬁvj, with
eigenstates being functions at sites);. The perturbation
mixes different values gfwith approximately the same to
form a ladder of quasiresonancé}é‘(n) (25. The coeffi-

cients are constructed as the following combination of the

Q(n): ¢h;=A}Q}(n). Using this fact and the explicit ex-
pressions(25) and (27), the eigenvalue equation takes the
form

~Fgjo(m) QAN+ 5 — 3 [w(n) +o(n')]

X[Q}\H(n,)A?H"'Q?fl(n’)A}\—l]%o-

To sum up oven’ in Eq. (30), we represent the frequency
o(n") in the form of a Cauchy integral:

déw(§)
m)g &1 "

(30

w(l)— (31)

whereg is a contour of integration along the real axis. Then

we obtain from Eq(25)

o

B (-D'sinms, 1
2 = 2 S T T Er e
sin oy
(32

TS (E- Q] (E— et 30

where the change of variablées n’ —n, is used. After inte-
gration (31) one obtains the following expression:
o(Nj+1)SiNT+1/m6+1. It is simple to see thato(n;,)
~w(n;) whenhve'/w?<1, which is consistent also with
the inequalityew’/w<<1 used for Eq(11) and the condition
for the semiclassical approximation for the perturbafion
<e. RedefiningC;=(1+sin74 /7=3)A; , and taking into ac-
count that=,,Q;(n")=1, one obtains finally from Eq¢30)
the Anderson-like equation

1
Cj+1+Cj_1+ ;u((SJ)C]:AC] (33)

with eigenvalue A—>0 and «=e/dhvm, while Uus;)
= §jsinwg(,+sin 775) is a pseudorandom potent[dJG]

For largej we conclude from Eq(27) that E, —th
follows from Egs. (8) and (27) that & —frac{ghvzj 2/2}

=frac{(K/2«)j?}. These numbers form a pseudorandom se-

guence as a function of quaswesonance numb24] with a
uniform distribution in[ —3,3]. Hence, the solution corre-
sponds to the exponential Iocahzanon/bff with some mean
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localization length(y) *~16x? as follows: A™AM(1
“+sinmd I78) Y(1+sinmd Iw8) te” I [25].

V. THE KINETIC COEFFICIENT

Solution of the eigenvalue problem for the Floquet opera-
tor enables us to express the correlation functi@ns ex-
plicit form The wave function takes the forma(ﬁ)(a t))

=Zm,Q] "(B)(m)A «(BgiMie=1vit  Taking into account the
epr|C|t expressuons for the wave functions and Etp) we
obtain from Eq.(24) the following expression foR:

R=S I IS I T eIl
a,B n ng m jkl r

X A AN AN, QM (n—d; ) Qu(Ny)

X pnn,Q “(Ma(M+d; J(n—1-d 3

X \m+d, gn+1-d, Q#(m+d, g +c.c. (34

The 4X6 matrixd, g is introduced for shortness of notation
and it is shown in Appendix A. Using E@25) and the aux-
iliary expressions of Eq$31) and(32), one can carry out the
sums ovemn,nq, andm (see Appendix A Summing ovem,
we obtain from Eqs(25) and (27):

> o(m+d, o) Vm-+d, QF «(M)Q#(m+d, ¢)

m

smw&
= w[n(a) 8,(a)+d, o]Vnj(a)— &(a)+d, 4
71'(‘5J
sinm[nj(a) = &j(a)—n;(B) + 5;(B) +d; ¢l (35
m[nj(a)—6j(a)—ni(B)+6(B)+d gl ’
where
[ B)]= 8 4 Z— 5a(B)]. (36)

The maximal contribution of Eq35) to sums ovew and 8
in Eqg. (34) is when the denominator in E@35) vanishes:
nj(ac) — 6j(ac) —nj(Be) + 6;(B:)=1=0. Then we obtain
from Eq. (36) an expression for the quasienergy difference:
)\ac—)\ﬁc=2[5j(ac)—5j(,8c)]wIwEA)\jycwIw.
(37)
Finally, the expression for the correlation functiéh ( see

Appendix A reads

R~—-2, EM {G{ (j.k,)cog wt—Aj cwt)
C ],K

+G, (j,k,eog wt+Aj cot)exp{ —(¥)(|j —k|
+1=ih} (39)

whereG (j,k,I) are slowly varying functions of,k,I, and
their epr|C|t form is presented in Appendix A.
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The expressioni38) depends strongly on the localization VI. SUMMARY
length 1{vy). When (y)—0 exponential truncation of the
sum over the index does not take place since then(”
—1. In this case the sum ovgrcan be estimated due to the
oscillating terms. Taking into account thélci(j,k,l) are
slowly varying functions, and rearrangidg . as an increas-
ing set ranging from-2 to 2, we obtain approximately that

We must justify the use of the Kubo formu{a) for the
response of the chaotic system to an infinitesimal perturba-

tion. The Kubo formula assumes théi is the time-
independent operator and it corresponds to the equilibrium.
But the chaotic system is not in equilibrium. Indeed, elec-
3,8inA, gt 0 ands,cosA; cwte<(Liw) 5(t). Then we obtain trlc(J.nsI interacting resonantl;f/ with r:hef_alltt.je[jnatlng flﬁ'|d in tcTe
from Eq. (1) thatK(z) =K, whereK is the constant value of SKIn Jayer acquire energy from the field due to chaotic dy-
the kine.tic coefficient T,he oscillating behavior kfas a  namics and then transfer it to the total electron system due to

) o ating . ﬁhe electron-electron collisions. In this sense these collisions
function of the magnetic field disappears due to classica . . . :

) i i . ) ._determine the mean free time For an isolated system this
chaotic dynamics that is realized in the fact that the localiza- .
. L process increases the temperature of the sample. To keep the
tion length goes to infinity.

In the opposite case when localization is strong enough t
cut exponentially the sum ovgrk,l, then only a few terms
of the row should be taken into account. In this case w
obtain(see Appendix Bthat the main term is proportional to
e whenj=I+1 andk=j, or j=k=1 andl=j. This
term, which contributes resonantly to the kinetic coefficient
K(2z), obtained in Appendix B, reads

temperature constant, a heat flow out of the system is re-
%uired. The temperature change due to this chaotic dynamics
is very small, because a number of electrons taking part in
She cyclotron resonance dynamiag, is much smaller than
the total number of conducting electroms n., /n~A/I
~10"4, whereA is the skin layer depth, whileis a linear
size of the sample. Therefore the transferred energy per a
conducting electron is negligibly small and consequently the
temperature change is negligible as wallll<1 K). In this
sense the total electron system can be considered as a ther-
2e‘<7>2 [E;rcos(wt—Alycwt)+£gcos{wt+Alvcwt)]. mal bath for the chaotic dynamics system. Hence, we can
Cc

(39) assume thap describes a system near the equilibrium with
the constant temperature, and it is a time-independent opera-
tor. These speculations may justify the use of &g .for the

Hence, we obtain the kinetic coefficient from Ed) in the  kinetic coefficient, as well as the Fourier transform proce-
form dure carried out in Eq40).
This analysis can be considered as a sum paradigm of a

iyt iyt quantum system with<1 and in this case the relevant de-
K(z)= 2 e VL, n e L scription of the kinetic features of the system is the classical
(2)= ¢ 1+ (24 0— A 0)? 1+ 72— 0+ A .0)2 one. When the classical counterpart of the system _is c_haotic,
' ' the quantum nature of the system is reflected in kinetic fea-

e~ (g e VL tures, as it is shown here. The nature of this quantum kinetics
> >t > > is totally different from the classical one. This difference is a
1+ 7zt o+ Ac0)" 1+ 7(Z2- 0= Ay o) result of quantum saturation of classical chaotic diffusion in

(40)  the energy space.
This phenomenon can be observed experimentally in met-

als or semimetals under anomalous skin effect at helium tem-
The oscillating behavior of the coefficie{(z) as a function  perature. For example, in bismuth under anomalous skin ef-
of the magnetic field reflects in the poles of E40). When  fect conditions at Helium temperaturésee, for example,
the magpnetic field is monotonically tuned, the quasienergyref. [26]). In this caseH~10°> Oe,y~10" sec?, and e
differences® (X 4y~ A g(c)) coincide withz repeatedly. For =AE/fw*, while /=AT/AE~27ho*/vAE. Hence it fol-
example, forz=0 Eq. (40) corresponds to dc conductance |ows that criterion for chaok(=rve/~27>1 is fulfilled.
and the resonant condition fulfills whex, =\ for The conditionw,7>1 still holds.
some value of. As it follows from Eqs.(27) and(36) when
H changes, the spectrug(n) changes and the magnitude of
the pseudorandom numberg;} changes as well. Therefore, ACKNOWLEDGMENTS
when the magnetic field is tuned the denominators in Eq. . .
(40) change violating the resonance conditions and corre- ! thank very much Professor S. Fishman for useful discus-
sponding to them repeatedly. The expresgi4d) describes SIONS and critical remarks. This research was supported in

the response of the quantum system that is chaotic in thBart by the Ministry of Absorption of Israel, by the Israel
classical limit. It reflects an essential difference betweernCi€nce Foundation founded by the Israel Academy of Sci-

classical and quantum dynamics, where dynamical localize€"¢€S and Humanities, and by the Niedersachsen Ministry of

tion of classical chaos piays a crucial role. It is also neces>cience(Germany.
sary to admit that this result is obtained in the framework of

the nonperturbative approach, where the strength of the high-

frequency fielde is not a perturbation parameter but the

value ofe"(Pce Y€ is the small parameter for the expan-  To obtain Eq.(38) from Eq. (34) we need to sum over
sion carried out to obtain Eq40). n,,n,m,a, andB. Using Eqs(31) and(32), one obtains that
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and

2 pon, QN =2 p(nn)QF(ny)
' ' > QM(n—d; y(n—1-d, g n+1=d, s(n.n(B)

S|n775k(,8)
= rodB) p(n,n(B)— dx(B)). —5(B)
(A1) _sina-ré,(ﬂ) n(B)— 8 (8)—1—d
Analogously, sums oven andn read - w8(B) olm(B)=a(p 3
+d, 1]\/nl(,8)_5l(18)+1_dr5+dr w(N(B)
> Qi (mo(m+d, o) Vm+d, Q#(m+d; ¢) ’ c
moo e ) ¢ ~ 8(B)+dy 1.0 B) ~ 5 B)). (A4)
sinm§j(a) Here d, ¢ is 4X6 matrix introducing for shortness of the
- 7 a) wlnj(e) = dj(a) notation. It reads
+d, V(@) 8(a) + b QN (a) — 6(a) tooo ot
-1 0 -1 1 0O 1
+d g, (A2) e (A5)
where -1 -1 -1 0 0 -1
QMn;(@)— 8(a)+d; ¢] whered, ;—1—d, 3=d, 3 andd, ;+1—d, 5=d, 5. As it is
' ' seen from Eqgs(35), (A3) and(Ab), the main contribution in
_sin m[nj(a)— &j(a)—ni(B)+ 6;(B)+d ¢ the summation ovetr and B is due to the denominators:
(@)= o(@)=n;(B)+5(A)+dr el nj(ac) = 8(ac) = Ni(B)+ 5(B)=1=0,  (A6)

(A3) "
such thatQJ. [nj(ac) — dj(ac)+d, g]=1. Let us denote by

2
- G;(] K1) = Zl dr,lp(nl(lgc) —6(Be)+ dr,lank(ﬂc) - 5k(:8c))w[nj(ac) - 5j(ac)

sinm dj(ac)
+ drz] \/nj(a’c) - 5j(a'c) + dr,4w[nl(:8c) - 5I(:8c) + dr,s] \/nl(ﬁc) - 5I(ﬁc) + dr,5 W
jlac

(1+ sina-réj(ac))zsinrrék(ﬂc) ( 1. sinw&k(ﬂc))sinw5|(ﬁc) ( . sinqr5|(/5‘c)) | A7)
ng(ac) 76 (Be) 7O (Be) m6(Be) 76(Bc)
|
and for the sum overfrom 3 to 4 by— G, (j,k,1). Then one ) 0
obtains Eq.38) from Eqgs.(34), (37) and (A7). EOC(GﬂE {S|nA,-,cwt]_><Gi> L ©2)
T [cosA| cot —a(t) '
APPENDIX B
As it has been mentionedy depends strongly on the where{(G™* )—IlmNHx(llN)E G. (j.k1).
localization length(y)~*. In the case of y)—0 one needs In the opposite case whee (V<1 one can take into
to evaluate the foIIowmg sums: account only the first two terms for sums ovgk,l for
exp{—(NI(—K+1-D]Ik
SinA; .ot
=2 Gc“’k”{cosAJwatJ (BL)
' e 2 Ao+ =HI~1x >, {--
whereG_ (j,k,1)=n;/j are slowly varying functions gt )
Rearranging these sums such that the pseudorandom values te ,Em {1 (B3)

of A; . range in order from-2 to 2, we obtain that the new

set of{j} and hences; (j,k,|) corresponded to this ordering

become pseudorandom as well. Then we obtain, approxiFhis imposes the following condition opnk,| in the sums:
mately, that (1) j=k=I for the first term and2) j=k=1,j=I, or j=I
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+1,j =k for the second term. Then we obtain from E(§8),

(B1), and (B2) that the first term does not contribute reso-

nantly:

: 0
SinAj cot
(B4)

; Gf(j,j,n[ ]ﬂ<6*>

1
CosA| cot —5(1)
(O]

For the condition(2) we obtain

R=e" > >

_ >, {[G{(1,1,9)+GE (j,8.0)]
j=2s=j-1

X cod wt—Aj cwt) +[Gg (j,j,8)+ G (j,5])]

xcos(wt+Aj,cwt)}+e*<7>El 21{[G§(j,j,s)
j=1s=j+

+G¢ (j,8,])]cog wt—Aj cot) +[Ge (j,],5)

+G¢ (J,s,j)]cod wt+ A cot)}. (B5)

To complete summation ovérin the first sum, we add and
subtract the following terms:
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e L codwt+Aq i), (B6)

where we use the notation
L£:=2 [G;(118)+G;(151)]. (B7)

s=1

Then we obtain from Eq¥B5), (B7)

ﬁ:e—mzl 2;{[G;’(j,j,s)+G:(j,s,j)]cos(wt
J=1s=)=*

—Aj cot) +[Ge (j,i,5)+ G (j,8,))]codwt+Aj cwt)}
—e 2 cogwt—A wt)—e (VL cog wt

+A;cwt). (B8)
The prime in the sum oves means that the terms with
=0 are omitted. Again, summing oveone obtains nonreso-
nant terms as in Eq¥B1) and (B2). The last two terms in
Eq. (B8) with j=1 contribute resonantly, yielding the ex-
pressiong39) and (40).
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