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Quantum response for chaotic resonances

A. Iomin
Physics Department, Technion, Haifa 32000, Israel

~Received 6 August 1999!

Chaotic dynamics of conducting electrons in the presence of a high-frequency electromagnetic field and a
constant homogeneous magnetic field is considered. It is shown that quantum fluctuations become important in
this case on a time scale shorter than mean free time. Nonperturbative approach for calculation of a kinetic
coefficient~conductivity! is developed. An analytical expression for the kinetic coefficient as a function of the
magnetic field and a localization length is obtained. Dependence of the conductivity on the quantum localiza-
tion length is studied.

PACS number~s!: 05.45.2a, 03.65.Sq, 73.50.Jt
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I. INTRODUCTION

Nonlinear dynamics of Bloch electrons in the presence
external fields attracts much attention today@1#. It is an ex-
ample of complicated motion with possible manifestation
chaos in classical dynamics, and, consequently, realizatio
quantum chaos for corresponding quantum counterpart
nanostructures@2#. Essential progress in this area w
achieved in the investigation of electronic motion in the l
eral surface superlattices in the presence of a homogen
magnetic field@3#. Phenomena of magnetoresistance, cla
cal and quantum Hall conductance, and 1/f noise have been
considered. Investigations of deviation from the classical
clotron resonance for microwave photoconductivity in an
dot arrays have been carried out as well@4#.

The cyclotron resonance in metals is an example of n
linear motion of electrons on the Fermi surface in the pr
ence of external fields with possible manifestation of ch
as well@5#. In this case, an essential difference between c
otic and integrable dynamics leads to an essential differe
in the behavior of the conductivity as a function of a ma
netic field. As it has been shown in@5#, conductivity oscilla-
tions as a function of a magnetic field disappear, while
the integrable case the conductivity oscillates due to re
nances between cyclotronic motion and an external h
frequency field. Quantum dynamics of the chaotically int
acting cyclotron resonances is considered in this paper.
known that quantum chaotic dynamics can be totally diff
ent from classical dynamics on time scales larger than s
characteristic times@6#. We study how this microscopic dif
ference between quantum and classical dynamics reflec
difference of macroscopic characteristics such as condu
ity. An important condition for observation of both isolate
cyclotron resonances and interacting ones isv* t@1, where
v* is the cyclotron frequency andt is a time of a mean free
path. In the case of chaotic dynamics, this condition is
portant for quantum-mechanical interpretation of this eff
as well. Indeed, if we take into account thattH52p/v* is a
Heisenberg time over which a discrete nature of Land
spectrum becomes important and reflects in dynamics
spectroscopy@7#, thent@tH means that the quantum effec
become important on the time scale of the order oft.t
.tH , and some of them are a manifestation of chaotic
namics of the classical limit. Saturation of classical diffusi
PRE 621063-651X/2000/62~1!/442~8!/$15.00
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in the energy space and dynamical localization of quas
ergy wave functions take place due to such quantum eff
@8#. Correlation functions of dynamical variables become
cillatory. One can expect that the oscillatory dependence
the surface impedance on the magnetic field is restored.
necessary to stress that linear response theory for the pe
bation discussed here does not hold in the case of the r
nant interaction of the Fermi surface electrons with the p
turbating microwave field in a regime where chao
dynamics takes place in the classical limit. In this case,
Kubo formula is used for the calculation of the response
the complete chaotic system including the microwave field
a probe external field. Justification of this approach is p
sented here as well. Kinetic coefficients can be found in t
case as a response of the chaotic system including the
ing field to a small probe field. Therefore, we will consid
the kinetic coefficient in the standard form of the Kubo fo
mula

K~z!5ReE
0

`

dtR~ t !e2t/t1 izt, ~1!

where Re is the real part and the velocity–velocity corre
tion function is

R~ t !5
1

2h̃
^v̂~ t !v̂~0!1 v̂~0!v̂~ t !&, ~2!

where v̂(t)5Û†(t) v̂(0)Û(t) is a velocity operator in the
Heisenberg representation,Û(t) is an evolution operator

^•••&[Tr( r̂•••) means quantum-mechanical averagi
with an appropriate density operatorr̂, andh̃ is a dimension-
less semiclassical parameter. In general cases, it dep
both on time and temperature. This expression takes
account the driving microwave field exactly.

Therefore, in this paper we present a model in the fram
work of the resonant perturbation approach, which is beyo
the linear response consideration. This model predicts a
sible experimental realization of quantum chaos in the ‘‘t
ditional’’ sense, investigating quantum effects in syste
that are chaotic in the classical limit (h̃→0). The following
standard scenario is suggested. The main mechanism of
sical chaos is an interaction between nonlinear resona
442 ©2000 The American Physical Society
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PRE 62 443QUANTUM RESPONSE FOR CHAOTIC RESONANCES
@9,10# with the Chirikov criterion of overlap. Cyclotron reso
nance in metals is a nonlinear effect. In the isolated re
nance approximation, the quantum dynamics of the nonlin
resonance is well described by classical equations of mot
Quantum corrections to the classical solutions are slo
growing @11# and can be omitted. The situation chang
when the nonlinear resonances overlap, giving rise to cha
dynamics. Classical equations are not valid because quan
corrections grow exponentially in time@12,7#. So-called
quantum localization of classical diffusion in the ener
space is a unique feature of the quantum counterpart of
chaotic system@7,8#. This quantum process is characteriz
by a localization lengthg21}h̃22. We found a behavior of
the kinetic coefficientK due to the localization length. Whe
the localization length is large enough, classical chaotic
namics dominates. In this case, the kinetic coefficientK is
constant and does not reflect the magnetic-field change
result of an overlapping of the nonlinear resonances. In
opposite extreme, wheng21 is small, the dynamics reflect
the discrete nature of the Landau levels. The kinetic coe
cient develops poles at the quantum resonant transitions
tween the Landau levels and oscillates with a change of
magnetic field. Thus the appearance of theseK oscillations in
overlapping cyclotron resonances reflects a distinctly qu
tum effect. This macrocharacteristic of the system can a
be measured experimentally.

The paper is organized as follows. In the Sec. II, an
ergy balance equation, describing an electron energy cha
under each passing of a skin layer, is modeled by an effec
Hamiltonian for the action-angle variables. This system c
be quantized by a standard semiclassical procedure. A ve
ity operator as well as all parameters of the effective Ham
tonian are determined in Sec. III. The quantum eigenva
problem for quasienergies and corresponding quasien
functions is solved in Sec. IV. It is shown that the proble
corresponds effectively to one-dimensional 1D Anderson
calization. A calculation of the kinetic coefficient is pre
sented in Sec. V and Appendixes A and B. The last sec
contains a summary of the obtained result and a discus
of its possible experimental implementation.

II. DERIVATION OF THE EFFECTIVE HAMILTONIAN

We consider an example of the quantum effect for cha
motion due to overlapping of cyclotron resonances in
case of the Azbel’-Kaner geometry for external fields~AKE!
@13#. Hence an alternating electric fieldE5(0,E0sinnt,0) is
concentrated in a skin layer of depthD. Heren is the fre-
quency of the alternating field. Electrons move in a pla
orthogonal to the homogeneous magnetic fieldH5(0,0,H)
with the cyclotron frequencyvc5eH/mcc. Heree, mc , and
c are charge, cyclotron effective mass, and the speed of li
respectively. The energyE of an electron changes by th
amount DE;2eE0A2DRcsinnt for every traverse of the
skin layer, whereRc is the radius of the orbit. It is suppose
that the time of passing of the skin layertD satisfies the
following conditions: tD!2p/n<2p/vc . Thus, we can
construct a map connecting the energies of an electron
the phases of the electric field over the periodT5T(E) be-
tween two successive traverses of the skin layer. It has
following form @5,14#:
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Ẽn115 Ẽn1e sinntn,
~3!

tn115tn1Tc~ Ẽn11!,

where Ẽ5E/\v* is the dimensionless energy; ande
5DE/\v* is a dimensionless semiclassical parameter c
nected to the number of energy levels captured in a re
nance. In this case, the cyclotron frequency is determined
vc(E)52p/v* Tc(E), where v* is a cyclotron frequency
introduced here for the dimensionless scaling and it will
determined in the explicit form in what follows. In the vicin
ity of a fixed point Ẽ* , which is defined by the resonanc
condition

nT~ Ẽ* !52p f , f 51,2, . . . , ~4!

Eqs. ~3! can be locally approximated by a standard m
@14,10#

En115En1e sinntn ,
~5!

tn115tn1T01zEn11 ,

where

E5 Ẽ2 Ẽ* , z5
dT~ Ẽ* !

dẼ*
, T0[T~ Ẽ* !. ~6!

For long-term dynamics, all these errors accumulate. For
short time scale of the order of a period of the hig
frequency perturbation 2p/n ~upon which the quantum
analysis is carried out below for the Floquet evolution ope
tor! this round-off does not affect the dynamics, but simp
fies the following analytical consideration. We notice that t
main structure of the nonlinear resonances remains
changed@15#. For the slowly varying spectrum, this proce
dure is the standard and widely used in the nonlinear dyn
ics theory@9,14–16#.

The nonlinear resonances are determined by the sec
term in the expansion, such that the Chirikov criterion
chaos isK5enz>1.

For the semiclassical considerations, we will pass to
action-angle variables for which a procedure of the se
classical quantization is standard@15#. In the absence of the
perturbation,E is energy of a periodic motion with a fre
quency

v~ I !5
dE
dI

5
2p

T~E!
'2p~T01zE!21. ~7!

Solving this equation, we obtain a solution that correspo
to the following conditionE!T0 /z:

E5VI 2mI 2/2, ~8!

whereV52p/T0 andm516p2z/T0
3.

The energy change resulting from the perturbation o
time Dt5T reads from Eqs.~5! and ~8!:
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DH05E
Dt

v~ I ! İ dt5e sinnt

5
e

nEDt
S d

dt8
d2p~ t82t !D cosnt8dt8, ~9!

whered2p(z) is the 2p periodicd function. Comparing in-
tegrands from the left- and right-hand sides of Eq.~9!, we
obtain for the arbitrary time scaleDt the following equations
of motion for the action-angle pair:

İ 5
e

n
v~ I !d2p8 ~u!cosnt,

u̇5v~ I !, ~10!

where d2p8 (u)[(d/du)d2p(u). These equations of motio
are not Hamiltonian. To obtain such equations, the pertu
tion of the form (e/n)v8(I )d2p(u)cosnt is added to the sec
ond equation of Eq.~10!. Finally, chaotic dynamics is de
scribed by the following effective Hamiltonian:

H5H0~ I !2
e

n
v~ I !d2p~u!cosnt. ~11!

It is simple to show from Eqs.~10! and~11! that an influence
of adding the perturbative term is negligibly small, wh
ev8(I )/v(I )!1. It should be stressed that the effecti
Hamiltonian~11! describes the same resonances taking p
in Eq. ~5! with the same threshold of chaos. It follows fro
Eqs.~5! and ~11! that nT(Er)52p l and l u̇(I r)5 lv(I r)5n,
whereI r is the resonant action corresponding to thel th reso-
nant andEr5E(I r) is corresponding resonant energy det
mined from Eq. ~8!. The following expansiond2p(u)
52( l 50

` cosu21 is used as well. This Hamiltonian can b
obtained for an arbitrary dispersion law with the peri
Tc(E), because in the procedure~10! and ~11! an explicit
form of H0 and, consequently, ofTc(E) was not used@17#.

The Hamiltonian formulation of the problem allows sem
classical quantization in the action-angle formulation:I→ Î

5h̃n̂52 i h̃]/]u. Hereh̃ is a dimensionless Planck consta
defined from the number of quanta in the magnetic field fl
The semiclassical approximation requires that the width
the perturbative potential is larger than the de Broglie wa
length@18#. In this connection it is necessary to restrict su
mation in the Fourier expansion of thed2p(u) potential. We
have understood thed function as an approximation of
potential with width of a spike that equals to 2p/N: dN(u)
52(k50

N cosku21, wheredN(u) tends tod2p(u) asN tends

to infinity and 1/h̃@N@1.
The Hamiltonian~11! can be rewritten in the Hermitian

form

Ĥ5Ĥ0~ n̂!2
e

n
@v~ n̂!dN~u!1H.c.#cosnt, ~12!

where H.c. is the Hermitian conjugation andĤ0(n̂) is the
quantized unperturbed Hamiltonian in Eq.~11!.
a-

e

-

.
f
-

-

III. THE VELOCITY OPERATOR

The velocity operatorv̂(0) can be determined fromH0 by
its standard definition:v(k)5]«(k)/](\k), where k is a
wave number while«(k) is an energy dispersion law. It i
reasonable to believe that it coincideslocally with H0 with
corresponding redefinition of the parameters due to the p
ence of the magnetic fieldHW 5(0,0,H). Therefore after
Peierls substitution@19# we can write in the Landau gaug
for two-dimensional motion that «(kxa,kyb,Hz)
5«„a/\px ; (b/\)(py2@eH/c#x)…, wherea,b are the peri-
ods of lattice in thex and y directions, respectively. The
dispersion law« can be rewritten approximately in the fo
lowing form:

«~k,Hz!'«01
«2

2 S a

\ D 2

px
21

«2

2 S b

\ D 2

3S py2
eH

c
xD 2

2
«4

4 F S a

\ D 2px
2

2
1

1

2 S b

\ D 2

3S py2
eH

c
xD 2G2

, ~13!

where«0 ,«2 ,«4 are parameters of the expansion. It is co
venient to introduce dimensionless variables in the follow
form:

p5
pxa

\
, q5

b

\ S eH

c
x2pyD5

eHb

c\
~x2x0!,

~14!

x05
b

\
py , v* t→t,

n

v*
→n, v* 5

«2abeH

\2c
.

Here the expression forv* is just the definition of the cy-
clotron frequency for Eq.~3!. The dimensionless Plank con
stant is also determined from Eq.~14! by the Poisson brack
ets forp andq :

h̃5\$q,p%P5\
]q

]x

]p

]px
5

Hab

\c/e
[2p

F

F0
, ~15!

whereF is the magnetic field flux through the cellab, and
F052p\c/e. Introducing new variables

p5 iAh̃

2
~k2k†!, q5Ah̃

2
~k1k†!, I 5h̃k†k,

~16!

and defining the Hamiltonian as«2«0 /\v* →H0 with V
5«2 /\v* , m5«4 /\v* , one obtains the relation betwee
the dispersion law in the local form~13! and the Hamiltonian
H0. Therefore the velocity isv[v11v25q̇5]H0 /]p,
where

v15 iA2h̃v~ I !k,
~17!

v252 iA2h̃k†v~ I !.
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For the semiclassical quantization, we can considerk†,k as a
creation and an annihilation operators that take form in
einu5^uun& representation

k̂†5An̂eiu, k̂5e2 iuAn̂, k̂†k̂5n̂52 i
]

]u
,

k̂†un&5An̂eiueinu5An11un11&, ~18!

k̂un&5Anun21&, k̂†k̂un&5nun&.

One obtains also from Eq.~18! that

^m8uv̂2um&52 iA2h̃v~m!Am11dm8,m11 ,
~19!

^muv̂1um8&5 iA2h̃v~m821!Am8dm,m821 ,

whered i , j is the Kroneckerd symbol.

IV. DIAGONALIZATION OF THE FLOQUET OPERATOR

The Hamiltonian~12! is periodic in time, hence the Flo
quet theory can be used for the analysis. The Shro¨dinger
equation

i h̃
]

]t
c~u,t !5Ĥ~u,t !c~u,t ! ~20!

is rewritten for the Floquet operator

F̂52 i h̃
]

]t
1Ĥ~ n̂,u,t !52 i h̃

]

]t
1Ĥ0~ n̂!1V̂~ n̂,u,t !

~21!

in the form of the eigenvalue problem

F̂ua~u,t !5h̃laua~u,t !, ~22!

due to the Floquet theorem

c~u,t !5e2 ilatua~u,t !, ~23!

whereuua(t)&[ua(u,t) are periodic in time with the period
2p/n quasienergy eigenfunctions, andla are corresponding
eigenvalues. Therefore,R in Eqs. ~1! and ~2! can be deter-
mined as follows:

R5(
n

^nur̂ v̂~ t !v̂~0!un&1c.c.

5(
a,b

(
n,n1

rn,n1
^n1uua~0!&^ua~0!uÛ†~ t !v̂~0!Û~ t !

3uub~0!&^ub~0!uv̂~0!un&1c.c.

5(
a,b

e2 i (lb2la)t(
n,n1

rn,n1
^n1uua~0!&^ua~ t !uv̂uub~ t !&

3^ub~0!uv̂un&1c.c., ~24!

where c.c. means complex conjugation andrn,n1

5^nur̂un1&. It is used here that for the momentt50,
e
c(u,0)5ua(b)(u,0)[ua(b)(0) and Û(t)c(u,0)
5e2 ila(b)tua(b)(u,t), where a(b) means here and in th
following eithera or b. To calculate the matrix elements i
Eq. ~24!, one needs to findla(b) andua(b) . To that end the
eigenvalue equation for the Floquet operator can be p
jected onto a basis of ‘‘photon states’’@20,16#. The reason
for the occurrence of the ‘‘photon states’’ or quasiresonan
@21# is that the unperturbed spectrumEn is a slowly varying
function of n @see Eq.~8!#. There are many transition fre
quencies, and many near-resonances~quasiresonances! take
place due to the external fieldV̂(n̂,u,t). Thus the eigenvalue
E(n) of the unperturbed HamiltonianH0 can be expanded
around a large valuen0 to the first orderE(n)'E(n0)
1h̃v(n0)Dn, whereDn5n2n0. Then the eigenvalue equa
tion ~22! for this approximation corresponds to the eige
value problem for a ‘‘linear kicked rotor’’@16,22#, which is
an exactly solvable model@23# with quasienergiesl̄
5 lv(Dn)(modn). The indexa(b) is omitted in what fol-
lows. The corresponding eigenstates in then representation
can be expressed as a composition of a chain of peaks s
rated by the energy of a photon of the external fieldh̃n.
These peaks correspond to the quasiresonances and ar
scribed by a sinc function of the form

Qj
l~n!5

sin@p~n2nj1d j !#

p~n2nj1d j !]
, ~25!

wherenj corresponds to the center of thej th peak andd j
characterizes its precise shape. These are determined
the linearized model by the following expressions:Enj

5E(n0)1h̃v(n0)Dnj'h̃l̄1h̃n j 2h̃v(n0)d j with h̃l̄

5E(n0)2h̃v(n0)n0 and

nj5 intH I ~ j !

h̃
J , d j5fracH I ~ j !

h̃
J , ~26!

where int$x% is the integer part ofx and frac$x% is its frac-
tional part@16#. We can obtain a solution for the origin non
linear problem~22! by matching quasiresonances~25! for
different energies@16,22#. Thus the quasiresonances dete
mine the energyEnj

on the ladder of statesnj analogous to
the linear counterpart by the form

Enj
5h̃l1h̃n j 2h̃d jv~nj !. ~27!

The eigenvaluel corresponds to Eq.~22! and sets the origin
of the ladder for the corresponding quasienergy eigenfu
tion, and the quasiresonance function~25! are numbered by
their position j on the ladder, wherenj is the peak of the
position and the detuningud j u,1/2 satisfies Eq.~27!. The
quasienergy eigenstate can be approximated by^nuul&
5( jAjQj (n), where Aj stands to be determined. To th
end, the following procedure is carried out. Eigenfunctio
for the unperturbed Floquet operatorF̂052 i h̃]/]t1H0 are

un, j &5einuė2 in j t[un&u j & ~28!

with corresponding eigenvaluesEn2h̃n j . Using the defini-
tion fn, j

la(b)5^n, j uula(b)
(u,t)& and omitting for shortness th
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indexa(b), we project the eigenvalue equation forF̂ on the
basis^ j ,nu and obtain the eigenvalue equation for the co
ficientsfn, j

l in the form

~En2h̃n j !fn, j
l 1

e

2n (
n8

^nuv~ n̂!d2p~u!1d2p~u!v~ n̂!un8&

3@fn8, j 11
l

1fn8, j 21
l

#5h̃lfn, j
l . ~29!

In the unperturbed case,e50 and h̃l5Enj
2h̃n j , with

eigenstates beingd functions at sitesnj . The perturbation
mixes different values ofj with approximately the samel to
form a ladder of quasiresonancesQj

l(n) ~25!. The coeffi-
cients are constructed as the following combination of
Qj

l(n): fn, j
l 5Aj

lQj
l(n). Using this fact and the explicit ex

pressions~25! and ~27!, the eigenvalue equation takes th
form

2h̃d jv~nj !Qj
l~nj !Aj

l1
e

4pn (
n8

@v~nj !1v~n8!#

3@Qj 11
l ~n8!Aj 11

l 1Qj 21
l ~n8!Aj 21

l #'0. ~30!

To sum up overn8 in Eq. ~30!, we represent the frequenc
v(n8) in the form of a Cauchy integral:

v~ l !5
1

2p i EG

djv~j!

j2 l
, ~31!

whereG is a contour of integration along the real axis. Th
we obtain from Eq.~25!

(
n8

1

j2n8
Qk

l~n8!5 (
l 52`

`
~21! lsinpdk

p~ l 1dk!~j2 l 2nk!
5

1

j1dk2nk

1
sinpdk

sin@p~j2nk!#~j2nk1dk!
, ~32!

where the change of variablesl 5n82nk is used. After inte-
gration ~31! one obtains the following expression
v(nj 61)sinpdj61 /pdj61. It is simple to see thatv(nj 61)
'v(nj ) when h̃nv8/v2!1, which is consistent also with
the inequalityev8/v!1 used for Eq.~11! and the condition
for the semiclassical approximation for the perturbationh̃n
!e. RedefiningCj5(11sinpdj /pdj)Aj

l , and taking into ac-
count that(n8Qj (n8)51, one obtains finally from Eq.~30!
the Anderson-like equation

Cj 111Cj 211
1

k
U~d j !Cj5LCj ~33!

with eigenvalue L→0, and k5e/4h̃np, while U(d j )
5d jsinpdj(dj1sinpdj)

21 is a pseudorandom potential@16#.
For large j we conclude from Eq.~27! that Enj

5h̃n j . It

follows from Eqs. ~8! and ~27! that d j5frac$zh̃n2 j 2/2%
5frac$(K/2k) j 2%. These numbers form a pseudorandom
quence as a function of quasiresonance numberj @24# with a
uniform distribution in@2 1

2 , 1
2 #. Hence, the solution corre

sponds to the exponential localization ofAj
l with some mean
-

e

-

localization length ^g&21;16k2 as follows: Aj
†lAl

l;(1
1sinpdj /pdj)

21(11sinpdl /pdl)
21e2^g&ul2ju @25#.

V. THE KINETIC COEFFICIENT

Solution of the eigenvalue problem for the Floquet ope
tor enables us to express the correlation functionsR in ex-
plicit form. The wave function takes the formuua(b)(u,t)&
5(m, jQj

la(b)(m)Aj
la(b)eimue2 in j t . Taking into account the

explicit expressions for the wave functions and Eq.~19! we
obtain from Eq.~24! the following expression forR:

R5(
a,b

(
n

(
n1

(
m

(
j ,k,l

(
r

e2 i (lb2la)Aj
†la

3Ak
laAl

†lbAj
lbdr ,1Ql

lb~n2dr ,1!Qk
la~n1!

3rn,n1
Qj

la~m!v~m1dr ,2!v~n212dr ,3!

3Am1dr ,4An112dr ,5Qj
lb~m1dr ,6!1c.c. ~34!

The 436 matrix dr ,s is introduced for shortness of notatio
and it is shown in Appendix A. Using Eq.~25! and the aux-
iliary expressions of Eqs.~31! and~32!, one can carry out the
sums overn,n1, andm ~see Appendix A!. Summing overm,
we obtain from Eqs.~25! and ~27!:

(
m

v~m1dr ,2!Am1dr ,4Qj
la~m!Qj

lb~m1dr ,6!

5
sinpd j

pd j
v@nj~a!2d j~a!1dr ,2#Anj~a!2d j~a!1dr ,4

3
sinp@nj~a!2d j~a!2nj~b!1d j~b!1dr ,6#

p@nj~a!2d j~a!2nj~b!1d j~b!1dr ,6#
, ~35!

where

nj@a~b!#5
la(b)

v
1 j

n

v
2d j@a~b!#. ~36!

The maximal contribution of Eq.~35! to sums overa andb
in Eq. ~34! is when the denominator in Eq.~35! vanishes:
nj (ac)2d j (ac)2nj (bc)1d j (bc)6150. Then we obtain
from Eq. ~36! an expression for the quasienergy differenc

lac
2lbc

52@d j~ac!2d j~bc!#v7v[Dl j ,cv7v.
~37!

Finally, the expression for the correlation functionR ~ see
Appendix A! reads

R'22(
c

(
j ,k,l

$Gc
1~ j ,k,l !cos~vt2D j ,cvt !

1Gc
2~ j ,k,l !cos~vt1D j ,cvt !%exp$2^g&~ u j 2ku

1u l 2 j u!%, ~38!

whereGc
6( j ,k,l ) are slowly varying functions ofj ,k,l , and

their explicit form is presented in Appendix A.
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The expression~38! depends strongly on the localizatio
length 1/̂g&. When ^g&→0 exponential truncation of the
sum over the indexj does not take place since thene2^g& j

→1. In this case the sum overj can be estimated due to th
oscillating terms. Taking into account thatGc

6( j ,k,l ) are
slowly varying functions, and rearrangingD j ,c as an increas-
ing set ranging from22 to 2, we obtain approximately tha
( jsinDj,cvt→0 and( jcosDj,cvt}(1/v)d(t). Then we obtain
from Eq. ~1! thatK(z)5K, whereK is the constant value o
the kinetic coefficient. The oscillating behavior ofK as a
function of the magnetic field disappears due to class
chaotic dynamics that is realized in the fact that the locali
tion length goes to infinity.

In the opposite case when localization is strong enoug
cut exponentially the sum overj ,k,l , then only a few terms
of the row should be taken into account. In this case
obtain~see Appendix B! that the main term is proportional t
e2^g& when j 5 l 61 and k5 j , or j 5k61 and l 5 j . This
term, which contributes resonantly to the kinetic coefficie
K(z), obtained in Appendix B, reads

2e2^g&(
c

@L c
1cos~vt2D1,cvt !1L c

2cos~vt1D1,cvt !#.

~39!

Hence, we obtain the kinetic coefficient from Eq.~1! in the
form

K~z!5(
c

F te2^g&L c
1

11t2~z1v2D1,cv!2
1

te2^g&L c
1

11t2~z2v1D1,cv!2

1
te2^g&L c

2

11t2~z1v1D1,cv!2
1

te2^g&L c
2

11t2~z2v2D1,cv!2G
~40!

The oscillating behavior of the coefficientK(z) as a function
of the magnetic field reflects in the poles of Eq.~40!. When
the magnetic field is monotonically tuned, the quasiene
differences6(la(c)2lb(c)) coincide withz repeatedly. For
example, forz50 Eq. ~40! corresponds to dc conductanc
and the resonant condition fulfills whenla(c)5lb(c) for
some value ofH. As it follows from Eqs.~27! and~36! when
H changes, the spectrumE(n) changes and the magnitude
the pseudorandom numbers$d j% changes as well. Therefore
when the magnetic field is tuned the denominators in
~40! change violating the resonance conditions and co
sponding to them repeatedly. The expression~40! describes
the response of the quantum system that is chaotic in
classical limit. It reflects an essential difference betwe
classical and quantum dynamics, where dynamical local
tion of classical chaos plays a crucial role. It is also nec
sary to admit that this result is obtained in the framework
the nonperturbative approach, where the strength of the h
frequency fielde is not a perturbation parameter but th
value ofe2^g&}e21/e2

is the small parameter for the expa
sion carried out to obtain Eq.~40!.
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VI. SUMMARY

We must justify the use of the Kubo formula~1! for the
response of the chaotic system to an infinitesimal pertur
tion. The Kubo formula assumes thatr̂ is the time-
independent operator and it corresponds to the equilibri
But the chaotic system is not in equilibrium. Indeed, ele
trons interacting resonantly with the alternating field in t
skin layer acquire energy from the field due to chaotic d
namics and then transfer it to the total electron system du
the electron-electron collisions. In this sense these collisi
determine the mean free timet. For an isolated system thi
process increases the temperature of the sample. To kee
temperature constant, a heat flow out of the system is
quired. The temperature change due to this chaotic dynam
is very small, because a number of electrons taking par
the cyclotron resonance dynamicsnc.r . is much smaller than
the total number of conducting electronsn: nc.r . /n'D/ l
'1024, whereD is the skin layer depth, whilel is a linear
size of the sample. Therefore the transferred energy p
conducting electron is negligibly small and consequently
temperature change is negligible as well (DT,1 K). In this
sense the total electron system can be considered as a
mal bath for the chaotic dynamics system. Hence, we
assume thatr̂ describes a system near the equilibrium w
the constant temperature, and it is a time-independent op
tor. These speculations may justify the use of Eq.~1! for the
kinetic coefficient, as well as the Fourier transform proc
dure carried out in Eq.~40!.

This analysis can be considered as a sum paradigm
quantum system withh̃!1 and in this case the relevant d
scription of the kinetic features of the system is the class
one. When the classical counterpart of the system is cha
the quantum nature of the system is reflected in kinetic f
tures, as it is shown here. The nature of this quantum kine
is totally different from the classical one. This difference is
result of quantum saturation of classical chaotic diffusion
the energy space.

This phenomenon can be observed experimentally in m
als or semimetals under anomalous skin effect at helium t
perature. For example, in bismuth under anomalous skin
fect conditions at Helium temperatures~see, for example,
Ref. @26#!. In this caseH;103 Oe,n;1011 sec21, and e
5DE/\v* , while z5DT/DE'2p\v* /nDE. Hence it fol-
lows that criterion for chaosK5nez'2p.1 is fulfilled.
The conditionvct@1 still holds.
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APPENDIX A

To obtain Eq.~38! from Eq. ~34! we need to sum ove
n1 ,n,m,a, andb. Using Eqs.~31! and~32!, one obtains that
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(
n1

rn,n1
Qk

lb~n1![(
n1

r~n,n1!Qk
lb~n1!

5
sinpdk~b!

pdk~b!
r„n,nk~b!2dk~b!….

~A1!

Analogously, sums overm andn read

(
m

Qj
la~m!v~m1dr ,2!Am1dr ,4Qj

lb~m1dr ,6!

5
sinpd j~a!

pd j~a!
v@nj~a!2d j~a!

1dr ,2#Anj~a!2d j~a!1dr ,4Qj
lb@nj~a!2d j~a!

1dr ,6#, ~A2!

where

Qj
lb@nj~a!2d j~a!1dr ,6#

5
sinp@nj~a!2d j~a!2nj~b!1d j~b!1dr ,6#

p@nj~a!2d j~a!2nj~b!1d j~b!1dr ,6#

~A3!
e

al

g
ox
and

(
n

Ql
lb~n2dr ,1!v~n212dr ,3!An112dr ,5r„n,nk~b!

2dk~b!…

5
sinpd l~b!

pd l~b!
v@nl~b!2d l~b!212dr ,3

1dr ,1#Anl~b!2d l~b!112dr ,51dr ,1r„nl~b!

2d l~b!1dr ,1 ,nk~b!2dk~b!…. ~A4!

Here dr ,s is 436 matrix introducing for shortness of th
notation. It reads

d5S 1 0 0 1 1 1

21 0 21 1 0 1

1 21 0 0 1 21

21 21 21 0 0 21

D , ~A5!

where dr ,1212dr ,35dr ,3 and dr ,1112dr ,55dr ,5 . As it is
seen from Eqs.~35!, ~A3! and~A5!, the main contribution in
the summation overa andb is due to the denominators:

nj~ac!2d j~ac!2nj~bc!1d j~bc!6150, ~A6!

such thatQ
j

lbc@nj (ac)2d j (ac)1dr ,6#51. Let us denote by
2Gc
1~ j ,k,l !5(

r 51

2

dr ,1r„nl~bc!2d l~bc!1dr ,1 ,nk~bc!2dk~bc!…v@nj~ac!2d j~ac!

1dr ,2#Anj~ac!2d j~ac!1dr ,4v@nl~bc!2d l~bc!1dr ,3#Anl~bc!2d l~bc!1dr ,5

sinpd j~ac!

pd j~ac!

3S 11
sinpd j~ac!

pd j~ac!
D 2sinpdk~bc!

pdk~bc!
S 11

sinpdk~bc!

pdk~bc!
D sinpd l~bc!

pd l~bc!
S 11

sinpd l~bc!

pd l~bc!
D , ~A7!
and for the sum overr from 3 to 4 by2Gc
2( j ,k,l ). Then one

obtains Eq.~38! from Eqs.~34!, ~37! and ~A7!.

APPENDIX B

As it has been mentioned,R depends strongly on th
localization lengtĥ g&21. In the case of̂ g&→0 one needs
to evaluate the following sums:

S5(
j

Gc
6~ j ,k,l !H sinD j ,cvt

cosD j ,cvtJ , ~B1!

whereGc
6( j ,k,l )}Anj}Aj are slowly varying functions ofj.

Rearranging these sums such that the pseudorandom v
of D j ,c range in order from22 to 2, we obtain that the new
set of$j% and henceGc

6( j ,k,l ) corresponded to this orderin
become pseudorandom as well. Then we obtain, appr
mately, that
ues

i-

S}^G6&(
j

H sinD j ,cvt

cosD j ,cvtJ →^G6&H 0

1

v
d~ t !J , ~B2!

where^G6&5 limN→`(1/N)( j
NGc

6( j ,k,l ).
In the opposite case whene2^g&!1 one can take into

account only the first two terms for sums overj ,k,l for
exp$2^g&@(j2k)1(l2j)#%:

(
j ,k,l

$•••%exp$2^g&@~ j 2k!1~ l 2 j !#%'13(
j ,k,l

$•••%

1e2^g&(
j ,k,l

$•••%. ~B3!

This imposes the following condition onj ,k,l in the sums:
~1! j 5k5 l for the first term and~2! j 5k61,j 5 l , or j 5 l
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61,j 5k for the second term. Then we obtain from Eqs.~38!,
~B1!, and ~B2! that the first term does not contribute res
nantly:

(
j

Gc
6~ j , j , j !H sinD j ,cvt

cosD j ,cvtJ →^G6&H 0

1

v
d~ t !J . ~B4!

For the condition~2! we obtain

R̃5e2^g&(
j 52

(
s5 j 21

$@Gc
1~ j , j ,s!1Gc

1~ j ,s, j !#

3cos~vt2D j ,cvt !1@Gc
2~ j , j ,s!1Gc

2~ j ,s, j !#

3cos~vt1D j ,cvt !%1e2^g&(
j 51

(
s5 j 11

$@Gc
1~ j , j ,s!

1Gc
1~ j ,s, j !#cos~vt2D j ,cvt !1@Gc

2~ j , j ,s!

1Gc
2~ j ,s, j !#cos~vt1D j ,cvt !%. ~B5!

To complete summation overj in the first sum, we add and
subtract the following terms:
an

l,

n
v

v.
,
d
.

e

a
k

-

e2^g&L c
6cos~vt6D1,cvt !, ~B6!

where we use the notation

L c
65(

s51
@Gc

6~1,1,s!1Gc
6~1,s,1!#. ~B7!

Then we obtain from Eqs.~B5!, ~B7!

R̃5e2^g&(
j 51

(
s5 j 61

8 $@Gc
1~ j , j ,s!1Gc

1~ j ,s, j !#cos~vt

2D j ,cvt !1@Gc
2~ j , j ,s!1Gc

2~ j ,s, j !#cos~vt1D j ,cvt !%

2e2^g&L c
1cos~vt2D1,cvt !2e2^g&L c

2cos~vt

1D1,cvt !. ~B8!

The prime in the sum overs means that the terms withs
50 are omitted. Again, summing overj one obtains nonreso
nant terms as in Eqs.~B1! and ~B2!. The last two terms in
Eq. ~B8! with j 51 contribute resonantly, yielding the ex
pressions~39! and ~40!.
s.

-

. A

ws
ch

i

tt.

tum
.

ett.
n,
@1# For review see R. Fleischmann, T. Geisel, R. Ketzmerick,
G. Petschel, Physica D86, 171 ~1995!.

@2# D. Iliescu, S. Fishman, and E. Ben-Jacob, Phys. Rev. B46, 14
675~1992!; G. Petschel and T. Geisel, Phys. Rev. Lett.71, 239
~1993!; A. Iomin, Phys. Rev. E52, R5743~1995!.

@3# T. Schlösseret al., Phys. Rev. B51, 10 737~1995!; T. Geisel,
R. Ketzmerick, and O. Schedletzky, Phys. Rev. Lett.69, 1680
~1992!; J. Wagenhuberet al., Phys. Rev. B45, 4372 ~1992!;
R. Fleischmann, T. Geisel, R. Ketzmerick, Phys. Rev. Lett.68,
1367 ~1992!; D. Springsguth, R. Ketzmerick, and T. Geise
Phys. Rev. B56, 2036~1997!.

@4# E. Vasiliadouet al., Phys. Rev. B52, R8658~1995!.
@5# A. Iomin, Phys. Rev. B49, 4341~1994!.
@6# G. Casati and B. V. Chirikov, inQuantum Chaos: Betwee

Order and Disorder, edited by G. Casati and B. V. Chiriko
~Cambridge University Press, Cambridge, 1995!.

@7# B.V. Chirikov, F.M. Izrailev, and D.L. Shepelyansky, So
Sci. Rev.C2, 209 ~1981!; G. Casati, B. V. Chirikov, J. Ford
and F. M. Izrailev, inStochastic Behavior in Classical an
Quantum Hamiltonian Systems, edited by G. Casati and B.V
Chirikov, Lecture Notes in Physics Vol. 93~Springer, Berlin,
1979!, p. 334.

@8# S. Fishman, D.R. Grempel, and R.E. Prange, Phys. Rev. L
49, 509 ~1982!; S. Fishman, inQuantum Chaos, Proceedings
of International School of Physics ‘‘Enrico Fermi,’’ Varen
1991, edited by G. Casati, I. Guarneri, and U. Smilans
~North-Holland, New York, 1993!.

@9# A. J. Lichtenberg and M. A. Lieberman,Regular and Stochas
tic Motion ~Springer-Verlag, New York, 1983!.

@10# B.V. Chirikov, Phys. Rep.52, 263 ~1979!.
@11# G.P. Berman, A.M. Iomin, and G.M. Zaslavsky, Physica D4,

113 ~1981!.
@12# G.P. Berman, and G.M. Zaslavsky, Physica~Amsterdam! 91A,
d

tt.

y

450 ~1978!; G.P. Berman and A.M. Iomin, Teor. Mat. Phy
77, 1197~1988! @Theor. Math. Phys.77, 277 ~1988!#.

@13# M.Y. Azbel’ and E.A. Kaner, Zh. E´ksp. Teor. Fiz.32, 826
~1956! @Sov. Phys. JETP5, 790~1957!#; J. Phys. Chem. Solids
6, 113 ~1958!; R. G. Chambers, inThe Physics of Metals,
edited by J. M. Ziman~Cambridge University Press, Cam
bridge, 1969!, p. 175.

@14# G. Casati, I. Guarneri, and D.L. Shepelyansky, Phys. Rev
36, 3501~1987!.

@15# A. Iomin and S. Fishman, Phys. Rev. E54, R1 ~1996!.
@16# N. Brenner and S. Fishman, J. Phys. A28, 5973~1995!.
@17# In this caseH0(I )5E is an inverting function ofI obtained

formally from Eq.~7!.
@18# This restriction is a natural one for the system, and it follo

from the condition that de Broglie wavelength is always mu
less than the traversal path inside the skin layer:l\5\/pF

!ADRc, wherepF is a momentum of an electron on the Ferm
surface.

@19# J.M. Luttinger, Phys. Rev.84, 814 ~1951!.
@20# C.R. de Oliveira, I. Guarneri, and G. Casati, Europhys. Le

27, 187 ~1994!.
@21# G. Casati, I. Guarneri, and D. Shepelyansky, IEEE J. Quan

Electron.24, 1240~1988!; R. V. Jensen, J. G. Leopold, and D
R. Richards, J. Phys. B21, L527 ~1988!.

@22# N. Brenner and S. Fishman, Phys. Rev. Lett.77, 3763~1996!.
@23# D.R. Grempel, S. Fishman, and R.E. Prange, Phys. Rev. L

49, 833 ~1982!; R.E. Prange, D.R. Grempel, and S. Fishma
Phys. Rev. B29, 6500~1984!.

@24# N. Brenner and S. Fishman, Nonlinearity4, 211 ~1992!; M.
Griniasty and S. Fishman, Phys. Rev. Lett.60, 1334~1988!.

@25# B. Derida and E. Gardner, J. Phys.45, 1283~1984!; G. Casati
et al., J. Phys.: Condens. Matter4, 149 ~1992!.

@26# Y.-H. Kao, Phys. Rev.129, 1122~1963!.


